
hhu.de

Conditional Text Generation
Dr. Nurul Lubis
Dialog Systems and Machine Learning Group
25.06.2021



hhu.de

Generative Networks

¾ Today’s generative networks are 
trained on huge amounts of data
¾ Generalizability to unseen samples

¾ Example: chit-chat systems
¾ Trained on data from reddit, twitter, ...

¾ Once deployed, we have no control 
over the generation

DialoGPT (Zhang et al., 2019)



hhu.de

Conditional Text Generation

¾ Generation with one or more controllable attributes
¾ Generation is conditioned on the control attribute
¾ Adding adjustable “knobs” in the generation process
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Conditional Text Generation

¾ Generation with one or more controllable attributes
¾ Generation is conditioned on the control attribute
¾ Adding adjustable “knobs” in the generation process

¾ Gaining popularity, many possible applications
¾ Story generation

¾ Ending (Peng et al., 2018) and plot (Yao et al., 2019)

¾ E-mail
¾ Politeness (Madaan et al., 2020)

¾ Dialogue
¾ Chitchat: Persona (Zhang et al., 2018; Dinan et al., 2016)
¾ Task-oriented: dialogue action

What do you think about 
the last football match?

I didn’t see it! I’m not 
really into sports

I think team A did very 
well!

Persona: likes sport

Persona: dislikes sport
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Text Generation

¾ Mainly framed as a language generation task
¾ Recurrent NN:

What do you think ... ?
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I didn’t see

...
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Conditional Text Generation

¾ Where can we add control attributes 
in the decoding process?

¾ 5 modules in the modification space 
(Prabhumoye et al., 2020) 
¾ External input ℎ!

¾ Start of decoding or generation

¾ Sequential input 𝑥
¾ Control at every time step

¾ Generator operation
¾ Parameterizing the control attribute

¾ Output 𝑜
¾ Projection to vocabulary

¾ Loss function 𝐿
¾ Comparison to target
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External input, initialization of decoder state

¾ Arithmetic or linear transformation
¾ When the control attribute comes from another source, it can 

be combined into ℎ!
¾ Linear layer (Hoang et al., 2016)
¾ Arithmetic operation (Chandu et al., 2019)
¾ Concatenation (Fu et al., 2018, Zhou et al., 2018; Dinan et al., 2018)

¾ Stochastic changes
¾ Variational model such as VAE (Kingma and Welling, 2014)

¾ Sample a latent variable to be used to initialize the decoding process 
(Bowman at al., 2016)

¾ External feedback
¾ Put ℎ" through a discriminator to detect the control signal
¾ Optimize the representation
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Sequential input

¾ Giving control signal at every time step
¾ Similar to before, the control attribute can be combined 

with each step of the sequential input with arithmetic or 
linear transformation 

¾ Numerous works based on RNN in different domains do 
not show impressive results
¾ Word definition: word to be defined is given as input at every 

time step concatenated with previously generated token 
(Noraset et al., 2017)

¾ Article generation: hidden state of encoder is concatenated 
at every time step (Phrabumoye et al., 2019)
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Generator operation, mapping input to output

¾ Recurrent NNs (Rumelhart et al., 1986)
¾ RNN cells contain different gates and 

operation to better model context
¾ LSTM (Hochreiter and Schmidhuber, 1997), 

GRU (Cho et al., 2014)

¾ Similarly, operations can be added to 
compute the control attribute

¾ Factored LSTM (Gan et al., 2017) for image 
captioning
¾ LSTM parameters are factored into three 

components, each responsible for style, image, and 
its associated tag.

¾ Semantic conditioning (Wen et al., 2015)
¾ add a cell in addition to LSTM cell which takes 

dialogue action to perform sentence planning.

¾ Transformers (Vaswani et al., 2017)
¾ Rely on attention mechanisms to draw 

global dependencies between input and 
output

¾ Hierarchical disentangled attention for 
graph-based conditioning (Chen et al., 2019)

¾ Pre-trained models
¾ Fine-tuning pre-trained models for 

downstream tasks has shown good results
¾ Plug and Play LM (Dathathri et al., 2019) 

combines pre-trained LM with classifiers to 
guide the generation process.

¾ Changes made should not interfere with pre-
trained weights otherwise retraining will be 
necessary



hhu.de

Output

¾ Attention
¾ Guiding the generation process by attending 

to the source sequence (Bahdanau et al., 
2015)
¾ Find a context vector at each time step which 

captures the information needed from the source

¾ Attention for controlled generation
¾ Add style control attribute to input sequence 

(Sudhakar et al., 2019)
¾ Use attention to attend over external document 

as additional source (Dinan et al., 2018)
¾ Use the representation of agent persona to 

compute attention weights (Zhang et al., 2018)
¾ Attention weights is recomputed according to 

the control attribute

¾ External feedback
¾ The output space can be modified with 

adversarial loss
¾ An adversary tries to distinguish sentence whose 

style has been transferred or sentence from the true 
target distribution (Shen et al., 2017)

¾ Use reward to optimize the output
¾ Style reward, semantic reward, and fluency reward 

(Gong et al., 2019)

¾ Arithmetic or linear transform
¾ Combine the output with control attribute 

through a linear layer, addition, or 
concatenation (Hoang et al., 2016)
¾ The transformed output is then used to predict the 

target token
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Loss function
¾ In addition to typical loss for matching to target, we can 

add loss to optimize for the control attribute
¾ KL loss

¾ Measure of divergence between two distributions
¾ Variational models.

¾ If prior for the (latent) control variable is known, we can use KL 
loss to minimize the distance between the learned posterior 
distribution and the prior (Lubis et al., 2020)

¾ Classifier loss
¾ Ensure that the generated sequence comply with the control 

attribute
¾ Which style is this sequence? (Hu et al., 2017; Phrabumoye et al., 

2018; Sudhakar et al., 2019)
¾ Does this sequence belong to style A? (Chandu et al., 2019)
¾ Does this sequence have the same style as sequence sampled 

from a particular style? (Yang et al., 2018)

¾ Custom task specific loss

<start> I didn’t see

I didn’t see

ℎ"

𝑥" 𝑥#

ℎ# ℎ$ℎ!

𝑥$

...

𝑥&

𝑜" 𝑜# 𝑜$

𝐿



hhu.de

Controlled Generation in 
Dialogue Systems
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Semantic action as control

Front end Modules

Speech 
recognition

Natural language
understanding Belief tracking

PolicyNatural language
generationSpeech synthesis

Speech waveform

I‘m looking for an Italian restaurant inform(food=Italian)

request(price)Which price range would you like?

Text Dialog act

food=Italian

Belief state

Eastern part of town inform(area=East) food=Italian, area=East

request(area)Which area do you have in mind?

Turn 1:
Turn 2:

Ontology

We would like to generate natural language response conditioned on the dialogue action
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Semantically-conditioned LSTM (Wen et al., 2015)

¾ LSTM cell 
¾ input, forget, and output gates
¾ Input is current token and previous hidden state

¾ Dialogue action (DA) cell below LSTM cell
¾ Input is dialogue action, modifies the dialogue act

¾ at each time step 𝑡 the DA cell reading gate decides 
what information should be retained for future time 
steps and discards the others

¾ Performs sentence planning
¾ Manipulates the LSTM value based on dialogue act 

features

¾ Skip connection, backwards reranking
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Semantically-conditioned LSTM (Wen et al., 2015)

¾ Tested on restaurant and hotel 
domains
¾ 8 shared system dialogue act
¾ 12 slots per domain with some 

overlap
¾ 248 distinct DA for restaurant 

domain, 164 for hotel
¾ Objective and subjective 

evaluations compared to RNN
¾ More natural and informative
¾ More preferred by humans
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Graph-based generation (Chen et al., 2019)

¾ Multi-domain large scale ontology 
requires scalability
¾ Graph-based representation exploits 

commonalities between domains, e.g. 
intents and slots

¾ Hierarchical disentangled self-attention
¾ Different attention heads focus on 

different nodes in the graph
¾ Hierarchical: Layers in the graph
¾ Domain -> action -> slot

¾ Allows efficient combinations of nodes
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Disentangled self-attention (DSA)

¾ Transformers concatenate vectors 
from multiple heads into the final 
vector

¾ While the method to compute 
attention in each head is identical to 
transformer, DSA employs binary 
vector which acts as a switch
¾ Only vectors from “active” heads are 

considered
¾ The active vectors are summed 

together
¾ Multiple DSA layers are stacked to 

better handle complexity
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Graph-based generation (Chen et al., 2019)

¾ MultiWOZ data (Budzianowski et al., 
2018)

¾ Training
¾ Dialogue act is used to activate 

corresponding heads, creating a path 
inside the graph.

¾ The generated response is matched to 
the target to compute loss for optimization

¾ Few-shot experiment
¾ Graph-act representation helps 

generalization in few-shot cases
¾ HDSA further exploit the hierarchical 

structure of the dialogue action space
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Semantically-conditioned GPT (Peng et al., 2020)

¾ Leveraging the fluency of large pre-trained models
¾ Pre-trained GPT2 Medium, 354M parameters
¾ Fine-tune with dialogue NLG task

¾ Training: Dialogue act followed by system response
¾ Inference: Dialogue act followed by [BOS] token
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Few-shot study on SC-GPT (Peng et al., 2020)

¾ FewShotWOZ:
¾ A modified RNNLM (Wen 

et al., 2015) and 
MultiWOZ (Budzianowski 
et al., 2018) corpus with 
smaller training set, more 
domains, and smaller 
overlap between train 
and test sets.
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Plug and Play Conversational Models (Madotto et al., 2020)

¾ Chit-chat system
¾ Trained on large amounts of data
¾ Benefits from large pre-trained models

¾ DialoGPT (Zhang et al., 2019)

¾ Plug and Play Conversational Models
¾ Residual Adapters (Houlsby et al., 2019; 

Bapna and Firat, 2019) within DialoGPT
¾ Added on top of each transformer layer
¾ Steers the output distribution without 

modifiying the pre-trained weights

¾ One adapter per control attribute

¾ Fine-tuning
¾ Given a set of dialogues with certain 

attribute 𝑎, optimize the parameter of the 
residual adapters to minimize the NLL over 
the dataset

¾ The parameters of the large pre-trained 
model is untouched

¾ The data used for fine-tuning need not be 
dialogue data, and can be artificially 
generated
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Conclusion

¾ Conditional generation is gaining attention
¾ Many ways to Rome

¾ Conditioning can be done at various places in the generation process
¾ Wide range of applications

¾ Dialogue systems are natural benefactors

¾ Generalizability
¾ How we represent the control attributes
¾ Parameter sharing

¾ Benefiting from large pre-trained models
¾ How to minimize re-training of pre-trained parameters
¾ There may be some tradeoff with fluency

¾ How to maintain fluency while perturbing the generation
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Thank you!


